E-Business + Web Science Research Group Good Relations logo

The Product Types Ontology: Class Definition for "Perfboard"

This page is part of http://www.productontology.org/, a huge, precise dictionary of product types and brand names for marking up Web sites with schema.org or the GoodRelations e-commerce standard.

Breaking news: schema.org has just implemented our proposal to define an additionalType property with the use of this service in mind!

Share on  Mention on Twitter  Set Google Bookmark  Bookmark on Delicious  Share on Facebook 

http://www.productontology.org/

On this page: Usage(schema.org/Microdata, RDFa, Facebook) Contact Information Caching Policy License Acknowledgments References

pto:Perfboard (rdf:type owl:Class)

URI http://www.productontology.org/id/Perfboard
rdfs:subClassOf gr:ProductOrService, http://schema.org/Product
rdfs:label Perfboard (as a class or brand name of products of services)
Translation(s):  Perfboard@fr;  บอร์ดไข่ปลา@th; 

rdfs:comment

Perfboard is a material for prototyping electronic circuits (also called DOT PCB). It is a thin, rigid sheet with holes pre-drilled at standard intervals across a grid, usually a square grid of spacing. These holes are ringed by round or square copper pads, though bare boards are also available. Inexpensive perfboard may have pads on only one side of the board, while better quality perfboard can have pads on both sides (plate-through holes). Since each pad is electrically isolated, the builder makes all connections with either wire wrap or miniature point to point wiring techniques. Discrete components are soldered to the prototype board such as resistors, capacitors, and integrated circuits. The substrate is typically made of paper laminated with phenolic resin (such as FR-2) or a fiberglass-reinforced epoxy laminate (FR-4). The grid system accommodates integrated circuits in DIP packages and many other types of through-hole components. Perfboard is not designed for prototyping surface mount devices. Before building a circuit on perfboard, the locations of the components and connections are typically planned in detail on paper or with software tools. Small scale prototypes, however, are often built ad hoc, using an oversized perfboard. Software for PCB layout can often be used to generate perfboard layouts as well. In this case, the designer positions the components so all leads fall on intersections of a grid. When routing the connections more than 2 copper layers can be used, as multiple overlaps are not a problem for insulated wires. Once the layout is finalized, the components are soldered in their designated locations, paying attention to orientation of polarized parts such as electrolytic capacitors, diodes, and integrated circuits. Next, electrical connections are made as called for in the layout. One school of thought is to make as many connections as possible without adding extra wire. This is done by bending the existing leads on resistors, capacitors, etc. into position, trimming off extra length, and soldering the lead to make the required electrical connection. Another school of thought refuses to bend the excessive leads of components and use them for wiring, on the ground that this makes removing a component later hard or impossible, e.g. when a repair is needed. If extra wires need to be used, or are used for principal reasons, they are typically routed entirely on the copper side of perfboards, because, as opposed to stripboards, nearby holes aren't connected, and the only hole in a pad is already occupied by a component's lead. Wires used range from isolated wires, including verowire (enameled copper wire with a polyurethane insulation supposed to melt when soldered), to bare copper wire, depending on individual preference, and often also on what is currently at hand in the workshop. For insulated wires thin solid core wire with temperature-resistant insulation such as Kynar or Tefzel is preferred. The wire gauge is typically 24 - 30 AWG. A special stripping tool can be used, incorporating a thin steel blade with a slit that the wire is simply inserted into and then pulled loose, leaving a clean stripped end. This wire was developed initially for circuit assembly by the wire wrap technique but also serves well for miniature point-to-point wiring on perfboard. Bare copper wire is useful when merging a number of connections to form an electrical bus such as the circuit's ground, and when there is enough space to properly route connections, instead of wiring them rats-nest style. Intentional solder bridges can be used to connect adjacent pads when necessary. Careful hand–eye coordination is needed to avoid causing inadvertent short circuits. Circuits assembled on perfboard are not necessarily fragile but may be less impact-resistant than printed circuit boards. Perfboard differs from stripboard in that each pad on perfboard is isolated. Stripboard is made with rows of copper conductors that form default connections, which are broken into isolated segments as required by scraping through the copper. This is similar to the pattern of default connections on a solderless breadboard. However, the absence of default connectivity on perfboard gives the designer more freedom in positioning components and lends itself more readily to software-aided design than stripboard or breadboard. (Source: Wikipedia, the free encyclopedia, see http://en.wikipedia.org/wiki/Perfboard)

Note: The extraction of the abstract from the Wikipedia page may sometimes yield imperfect results. We are improving the algorithm regularly.

is rdfs:domain of gr:category gr:color gr:condition gr:depth gr:hasEAN_UCC-13 gr:hasGTIN-14 gr:hasMPN gr:hasManufacturer gr:hasStockKeepingUnit gr:height gr:isAccessoryOrSparePartFor gr:isConsumableFor gr:isSimilarTo gr:weight gr:width
is rdfs:range of gr:includes gr:isAccessoryOrSparePartFor gr:isConsumableFor gr:isSimilarTo

Note: This is a generic list. Some of the properties may not be applicable to this particular type of object.

Trademark Disclaimer:  Since this service returns class descriptions for potentiall any series of characters, it cannot indicate automatically whether a name is a registered trademark or otherwise protected. We assume no liability for the absence of trademark rights and other damages. See the section "License" below for details.

[back to top]

Usage

The following shows how to model that you offer to sell [a/an/some] Perfboard for $ 19.99.

[back to top]

Microdata / Use with http://schema.org/Product

One of the most powerful usages of the class definitions from this site is to describe the type of your page and product for the schema.org product markup in Microdata syntax much more precisely.

Simply add the full URI of a class from this site, e.g. http://www.productontology.org/id/Perfboard as an additional type as follows:

<div itemscope itemtype="http://schema.org/Product">
    <link itemprop="additionalType" href="http://www.productontology.org/id/Perfboard" />
    <!-- other schema.org properties go in here -->
</div>		

Note: In HTML5, it is valid to use the <link> element in the body of a HTML document.

Here is a complete example:

<!DOCTYPE html>
<html>
<head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
    <title>An offer to sell a / some Perfboard</title>
</head>
<body>
<div itemscope itemtype="http://schema.org/Product" itemid="#product">
    <link itemprop="additionalType" href="http://www.productontology.org/id/Perfboard" />
    <span itemprop="name">.. a short name for the object ...</span>
    Product description: 
    <span itemprop="description">... a longer description ...</span>
    <div itemprop="offers" itemscope itemtype="http://schema.org/Offer" itemid="#offer">
        <span itemprop="price">$19.99</span> 
        <link itemprop="availability" href="http://schema.org/InStock" />In stock
    </div>
</div>
</body>
</html>

Turtle Syntax

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix pto: <http://www.productontology.org/id/> .
@prefix gr: <http://purl.org/goodrelations/v1#> .
@prefix foo: <http://example.com/> .

# The object
foo:myObject a <http://www.productontology.org/id/Perfboard> ;
	a gr:SomeItems ;
	gr:name "... a short name for the object ..."@en ;
	gr:description "... a longer description ..."@en .

# The agent (person or company) who is offering it
foo:ACMECorp a gr:BusinessEntity ;
	gr:legalName "ACME Corp" ;
	gr:offers foo:Offer .
		
# The offer to sell it
foo:Offer a gr:Offering ;
	gr:includes foo:myObject;
	foaf:page <http://URI_of_the_page_containing_the_offer.com>;
	gr:hasBusinessFunction gr:Sell ;
	gr:validFrom "2011-01-24T00:00:00+01:00"^^xsd:dateTime ;
	gr:validThrough "2011-12-24T00:00:00+01:00"^^xsd:dateTime ;
	gr:hasPriceSpecification
         [ a gr:UnitPriceSpecification ;
           gr:hasCurrency "USD"^^xsd:string ;
           gr:hasCurrencyValue "19.99"^^xsd:float ;
           gr:validThrough "2011-12-24T00:00:00+01:00"^^xsd:dateTime ] .

Note: Replace gr:SomeItems (http://purl.org/goodrelations/v1#SomeItems) by gr:Individual if you are describing a unique object of that kind (e.g. antique furniture).

[back to top]

RDFa

<!DOCTYPE html>
<html version="HTML+RDFa 1.1" xmlns="http://www.w3.org/1999/xhtml">
<head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
    <title>An offer to sell a / some Perfboard</title>
</head>
<body>
<div xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
     xmlns:foaf="http://xmlns.com/foaf/0.1/"
     xmlns:gr="http://purl.org/goodrelations/v1#"
     xmlns:pto="http://www.productontology.org/id/"
     xmlns:foo="http://example.com/"
     xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<!-- The agent (person or company) who is offering it -->
   <div about="#ACMECorp" typeof="gr:BusinessEntity">
      <div property="gr:legalName">ACME Corp</div>
      <div rel="gr:offers">
<!-- The offer to sell it -->	
         <div about="#offer" typeof="gr:Offering">
            <div rel="gr:hasBusinessFunction" resource="http://purl.org/goodrelations/v1#Sell"></div>
            <div rel="gr:includes">
<!-- The object -->	
               <div about="#myObject" typeof="http://www.productontology.org/id/Perfboard">
                  <div rel="rdf:type" resource="http://purl.org/goodrelations/v1#SomeItems"></div>
                  <div property="gr:description" xml:lang="en">... a longer description ...</div>
                  <div property="gr:name" xml:lang="en">.. a short name for the object ...</div>
               </div>
            </div>
            <div rel="foaf:page" resource="http://URI_of_the_page_containing_the_offer"></div>
            <div rel="gr:hasPriceSpecification">
               <div typeof="gr:UnitPriceSpecification">
                  <div property="gr:hasCurrency" content="USD" datatype="xsd:string">$ </div>
                  <div property="gr:hasCurrencyValue" datatype="xsd:float">19.99</div>
                  <div property="gr:validThrough" content="2011-12-24T00:00:00+01:00" 
					   datatype="xsd:dateTime"></div>
               </div>
            </div>
            <div property="gr:validFrom" content="2011-01-24T00:00:00+01:00"
                 datatype="xsd:dateTime"></div>
            <div property="gr:validThrough" content="2011-12-24T00:00:00+01:00"
                 datatype="xsd:dateTime"></div>
         </div>
      </div>
   </div>
</div>
</body>
</html>

Note: Replace gr:SomeItems (http://purl.org/goodrelations/v1#SomeItems) by gr:Individual if you are describing a unique object of that kind (e.g. antique furniture).

[back to top]

RDF/XML

<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF xmlns:gr="http://purl.org/goodrelations/v1#" 
  xmlns:pto="http://www.productontology.org/id/" 
  xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
  xmlns:foaf="http://xmlns.com/foaf/0.1/" 
  xmlns:foo="http://example.com/" 
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!-- The object -->
  <rdf:Description rdf:about="http://example.com/myObject">
    <rdf:type rdf:resource="http://www.productontology.org/id/Perfboard"/>    
    <rdf:type rdf:resource="http://purl.org/goodrelations/v1#SomeItems"/>
    <gr:name xml:lang="en">... a short name for the object ...</gr:name>
    <gr:description xml:lang="en">... a longer description ...</gr:description>
  </rdf:Description>
<!-- The agent (person or company) who is offering it -->
  <gr:BusinessEntity rdf:about="http://example.com/ACMECorp">
    <gr:legalName>ACME Corp</gr:legalName>
    <gr:offers rdf:resource="http://example.com/Offer" />
  </gr:BusinessEntity>
<!-- The offer to sell it -->   
  <gr:Offering rdf:about="http://example.com/Offer">
    <gr:includes rdf:resource="http://example.com/myObject" />
    <foaf:page rdf:resource="http://URI_of_the_page_containing_the_offer"/>
    <gr:hasBusinessFunction rdf:resource="http://purl.org/goodrelations/v1#Sell"/>
    <gr:validFrom rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">
      2011-01-24T00:00:00+01:00</gr:validFrom>
    <gr:validThrough rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">
      2011-12-24T00:00:00+01:00</gr:validThrough>
    <gr:hasPriceSpecification>
      <gr:UnitPriceSpecification>
        <gr:hasCurrency rdf:datatype="http://www.w3.org/2001/XMLSchema#string">USD</gr:hasCurrency>
        <gr:hasCurrencyValue rdf:datatype="http://www.w3.org/2001/XMLSchema#float">19.99</gr:hasCurrencyValue>
        <gr:validThrough rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">
          2011-12-24T00:00:00+01:00</gr:validThrough>
      </gr:UnitPriceSpecification>
    </gr:hasPriceSpecification>
  </gr:Offering>

</rdf:RDF>

Note: Replace gr:SomeItems (http://purl.org/goodrelations/v1#SomeItems) by gr:Individual if you are describing a unique object of that kind (e.g. antique furniture).

[back to top]

SPARQL Query

prefix foaf: <http://xmlns.com/foaf/0.1/> 
prefix xsd: <http://www.w3.org/2001/XMLSchema#> 
prefix pto: <http://www.productontology.org/id/> 
prefix gr: <http://purl.org/goodrelations/v1#> 
prefix foo: <http://example.com/> 

# Find the cheapest offer for a Perfboard

SELECT * WHERE{
?company gr:offers ?offer .
?offer a gr:Offering .
?offer gr:hasBusinessFunction gr:Sell .
OPTIONAL {?offer rdfs:label ?label } .
OPTIONAL {?offer gr:name ?label } .
OPTIONAL {?offer rdfs:comment ?label } .
OPTIONAL {?offer gr:description ?label } .
?offer gr:hasPriceSpecification ?p .
?p a gr:UnitPriceSpecification .
?p gr:hasCurrency ?currency .
?p gr:hasCurrencyValue ?price .
?offer gr:includes ?product .
?product a <http://www.productontology.org/id/Perfboard> .
}
ORDER BY (?price)
LIMIT 10

[back to top]

Facebook Open Graph Protocol

You can also use the class definitions from this site for better describing the type of your page or product for the Facebook Open Graph Protocol.

Simply define the namespace prefix pto: in the <html> element of your page

<html version="HTML+RDFa 1.1" 
	xmlns="http://www.w3.org/1999/xhtml" 
	xmlns:pto="http://www.productontology.org/id/" 
	>

and use the compact URI (CURIE) pto:Perfboard in combination with og:type as follows:

	<meta property="og:type" content="pto:Perfboard"/>

A complete example is here.

[back to top]

Contact Information

Univ.-Prof. Dr. Martin Hepp

E-Business and Web Science Research Group
Chair of General Management and E-Business
Universität der Bundeswehr München
Werner-Heisenberg-Weg 39
D-85579 Neubiberg, Germany

Phone: +49 89 6004-4217
eMail: mhepp(at)computer.org (preferred mode of communication)
Web: http://www.heppnetz.de/
Web: http://www.unibw.de/ebusiness/

[back to top]

Caching Policy

In order to minimize the load on the Wikipedia API, all requests are cached internally for 72 hours. This means that changes to the English Wikipedia will be available in this service within 72 hours or less if the same entry has been requested before. Classes not requested within the last six hours are always guaranteed to be in sync with the latest version in Wikipedia.

The RDF/XML dump file is updated every 12 hours only.

[back to top]

License

The class definition text is taken from Wikipedia, the free encyclopedia under a Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) license. Accordingly, the ontology class definitions are available under the very same license.

Trademark Disclaimer:  Since this service returns class descriptions for potentially any series of characters, it cannot indicate automatically whether a name is a registered trademark or otherwise protected. If you want us to block a certain name, please send your request including proof of your rights on the name to our contact address listed below.. Any of the trademarks, service marks, collective marks, design rights or similar rights that are mentioned, used, or cited in this service are the property of their respective owners. Their use here does not imply that you may use them for any purpose other than for the same or a similar informational use as contemplated by the original authors of the underlying Wikipedia articles under the CC-BY-SA and GFDL licensing schemes. Productontology.org is neither endorsed by nor affiliated with any of the holders of any such rights and as such cannot grant any rights to use any otherwise protected materials. Your use of any such or similar incorporeal property is at your own risk.

[back to top]

Acknowledgements

Thanks to Stefano Bertolo, Julien Chaumond, Bob Ferris, Kingsley Idehen, Axel Polleres, Andreas Radinger, Alex Stolz, and Giovanni Tummarello for very valuable feedback, and to Katharina Siorpaes and Daniel Bachlechner, who contributed to the initial analysis of the stability of Wikipedia URIs back in 2007.

The work on The Product Types Ontology has been supported by the German Federal Ministry of Research (BMBF) by a grant under the KMU Innovativ program as part of the Intelligent Match project (FKZ 01IS10022B).

BMBF logo

[back to top]

References

Wikipedia: Perfboard, available at http://en.wikipedia.org/wiki/Perfboard.

Hepp, Martin: GoodRelations: An Ontology for Describing Products and Services Offers on the Web, Proceedings of the 16th International Conference on Knowledge Engineering and Knowledge Management (EKAW2008), Acitrezza, Italy, September 29 - October 3, 2008, Springer LNCS, Vol 5268, pp. 332-347.

Hepp, Martin; Siorpaes, Katharina; Bachlechner, Daniel: Harvesting Wiki Consensus: Using Wikipedia Entries as Vocabulary for Knowledge Management, IEEE Internet Computing, Vol. 11, No. 5, pp. 54-65, Sept-Oct 2007.

Valid XHTML 1.0 Strict